The role of the intestinal microbiota in the health and disease of dogs and its importance in the agricultural sector
Contenido principal del artículo
Resumen
La Microbiota intestinal es fundamental en las funciones nutricionales, fisiológicas e inmunológicas adecuadas de los perros domésticos que intervienen en el sector agropecuario en el cuidado de animales y cultivos. La presencia de un ecosistema microbiano es fundamental para maximizar la salud y el rendimiento animal. El presente estudio, es una revisión sistemática sobre el rol que tiene microbiota intestinal en la salud y enfermedad de los perros y su importancia en el sector agropecuario. Y es con el fin de realizar esfuerzos para reducir el uso de antibióticos en los perros domésticos, y en animales de producción. La microbiota intestinal tiene la capacidad de mejorar en los hospedadores la resistencia a las enfermedades. Desarrollar una dieta con granos de cereales con alto contenido de carbohidratos fermentables, probióticos y prebióticos es una opción sostenible para aumentar la diversidad microbiana y los microbios beneficiosos, que ayudan a prevenir la incidencia de diarrea y disminuir el uso de antibióticos subterapéuticos. Finalmente, es importante mencionar que la microbiota intestinal brinda una mayor protección a los animales ante infecciones.
Descargas
Detalles del artículo
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Se autoriza la reproducción y citación del material que aparece en la revista, siempre y cuando se ajusten a las condiciones establecidas en la licencias de los artículos publicados Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.
Citas
Broom LJ, Kogut MH (2018) Inflammation: friend or foe for animal production? Poultry Science 97 (2):510-514.
Broom LJ, Kogut MH (2018). The role of the gut microbiome in shaping the immune system of chickens. Vet Immunol Immunopathol 204:44-51. https://doi.org/10.1016/j.vetimm.2018.10.002.
Ducatelle R, Eeckhaut V, Haesebrouck F, van Immerseel F (2015). A review on prebiotics and probiotics for the control of dysbiosis. Present status and future perspectives. Animal 9 (1):43-48. https://doi.org/10.1017/S1751731114002584
Ducatelle R, Goossens E, de Meyer F, Eeckhaut V, Antonissen G, Haesebrouck F, van Immerseel F (2018). Biomarkers for monitoring intestinal health in poultry. Present status and future perspectives. Veterinary research 49(1):43. https://doi.org/10.1186/s13567-018-0538-6
Garcia-Mazcorro, J. F., & Suchodolski, J. S. (2017). Investigation of the microbiome in canine and feline gastrointestinal diseases. Animal Health Research Reviews, 18(2), 93-108. doi: 10.1017/S1466252317000141.
Garcia-Mazcorro, J. F., & Dowd, S. E. (2011). The canine gastrointestinal microbiome: a review. Journal of veterinary internal medicine, 25(1), 1-10. doi: 10.1111/j.1939-1676.2010.0658.x.
Gómez, D. E., Arroyo, L. G., Costa, M. C., Viel, L., & Weese, J. S. (2015). Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. Journal of Veterinary Internal Medicine, 29(5), 1564-1572. doi: 10.1111/jvim.13617.
Guevarra RB, Lee JH, Lee SH, Seok M-J, Kim DW, Kang BN et al (2019). Piglet gut microbial shifts early in life: causes and effects. Journal of animal science and biotechnology 10:1. https://doi.org/10.1186/ s40104-018-0308-3.
Handl, S., Dowd, S. E., Garcia-Mazcorro, J. F., Steiner, J. M., & Suchodolski, J. S. (2011). Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiology Ecology, 76(2), 301-310. https://doi.org/10.1111/j.1574-6941.2011.01058.x.
Kogut M, & Zhang G. Gut Microbiota, Immunity, and Health in Production Animals. 1st ed: Springer. New York (EU). 2022.
Koppel, N., Maini Rekdal, V., & Balskus, E. P. (2019). Chemical transformation of xenobiotics by the human gut microbiota. Frontiers in veterinary science, 6, 153. doi: 10.3389/fvets.2019.00153.
Li, Q., Lauber, C. L., Czarnecki-Maulden, G., Pan, Y., Hannah, S. S., Schacht, E., ... & Ackermann, M. R. (2017). Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions. mBio, 8(1), e01703-16. doi: 10.1128/mBio.01703-16.
McFarland LV (2014). Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events. A systematic review. BMJ Open 4(8):e005047. https://doi.org/10.1136/ bmjopen-2014-005047.
Middelbos, I. S., Vester Boler, B. M., Qu, A., White, B. A., Swanson, K. S., & Fahey Jr, G. C. (2010). Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PloS One, 5(3), e9768. https://doi.org/10.1371/journal.pone.0009768.
Pitta DW, Kumar S, Vecchiarelli B, Shirley DJ, Bittinger K, Baker LD, Ferguson JD, Thomsen N (2014) Temporal dynamics in the ruminal microbiome of dairy cows during the transition period. Journal of Animal Science 92(9):4014-4022. https://doi.org/10.2527/jas.2014-7621
Rochus, K., Janssens, G. P., Hesta, M., & Debraekeleer, J. (2018). Effect of probiotics and prebiotics on the canine gastrointestinal tract and their interactions with the host. Journal of animal physiology and animal nutrition, 102(3), 601-617. doi: 10.1111/jpn.12838.
Ross, G. R., Gusils, C., Fondevila, M., & Signorini, M. L. (2015). Intestinal microbiota and immune system of piglets: influence of enterococcus faecium cernelle 68 supplementation. Archives of Microbiology, 197(2), 185-193. doi: 10.1007/s00203-014-1058-8antibióticos.
Rossi, G., Pengo, G., Caldin, M., Piccionello, A. P., Steiner, J. M., & Cohen, N. D. (2014). Comparison of microbiological, histological, and immunomodulatory parameters in response to treatment with either combination therapy with prednisone and metronidazole or probiotic VSL# 3 strains in dogs with idiopathic inflammatory bowel disease. PloS one, 9(4), e94699. https://doi:10.1371/journal.pone.0094699
Sassone-Corsi M, Raffatellu M (2015). No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. The Journal of Immunology 194:4081-4087.
Silva MLF, Lima JAF, Cantarelli VS, Amaral NO, Zangerônimo MG, Fialho ET (2010). Probiotics and antibiotics as additives for sows and piglets during nursery phase. Revista Brasileira de Zootecnia 39:2453-2459. https://doi.org/10.1590/S1516-35982010001100019
Stanley D, Geier MS, Denman SE, Haring VR, Crowley TM, Hughes RJ et al (2013). Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary microbiology 164(1-2):85-92.
Suchodolski, J. S. (2011). Intestinal microbiota of dogs and cats: A bigger world than we thought. Veterinary Clinics of North America: Small Animal Practice, 41(2), 261-272. https://doi.org/10.1016/j.cvsm.2010.12.006
Suchodolski, J. S. (2016). Diagnosis and interpretation of intestinal dysbiosis in dogs and cats. Journal of Veterinary Internal Medicine, 30(4), 927-941. DOI: 10.1111/jvim.13975.
Suchodolski, J. S. (2016). Diagnosis and interpretation of intestinal dysbiosis in dogs and cats. Minamoto, Y., Hooda, S., Swanson, K. S., & Suchodolski, J. S. (2012). Fecal microbiota in healthy dogs and dogs with chronic inflammatory enteropathy. Veterinary microbiology, 160(3-4), 353-359. doi: 10.1016/j.vetmic.2012.06.021.
Van den Abbeele, P., Belzer, C., Goossens, M., Kleerebezem, M., De Vos, W. M., Thas, O., ... & Verstraete, W. (2013). Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. The ISME journal, 7(5), 949-961. doi: 10.1038/ismej.2012.158.
Videnska P, Faldynova M, Juricova H et al (2013) Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC veterinary research 9:30. https://doi.org/10.1186/1746-6148-9-30. https://doi.org/10.1186/1746-6148-9-30
Zeng, M. Y., Inohara, H., & Katoh, K. (2017). The gut microbiome as a therapeutic target in inflammatory bowel disease. Inflammatory bowel diseases, 23(8), 1327-1339. https://doi: 10.1097/MIB.0000000000001117